
Implementation of Memory Test Controller

and design of Control Logic for repair

module
Deepa.V.H, (1DA04LVS03), MTech, Dr. Ambedkar Institute of Technology

ABSTRACT

Testing semiconductor memories is increasingly

important today because of the high density of current

memory chips. This paper presents an overview of testing

and repairing of semiconductor random access memories

(RAMs). An important aspect of this test procedure is the

detection of permanent faults that cause the memory to

function incorrectly and the control logic of the repair

module that can be used. Functional-level fault models

are very useful for describing a wide variety of RAM

faults. Several fault models are discussed throughout the

paper. Test procedures for these fault models are

presented which are widely used today for testing chip

level, array level and board level functional memory

defects. Repairing of the memory includes replacing the

rows and columns which have maximum errors with the

redundant rows and columns present in the memory.

I. INTRODUCTION

The standard process for repairing the memories

involve three phases.Firstly, the memories are tested

and faulty cells are located. Secondly, the rows and

columns which have the maximum errors and which

have to be replaced are selected. Thirdly, the

addresses of rows and columns are given to the

computer controlled laser to disconnect the defective

rows and columns and connect the spare rows and

columns. Since third one is just the hardware, this

paper concentrates on the first two steps. Through the

years different approaches have been investigated and

proposed for testing memories. The most traditional

approach is to simply apply a sequence of test patterns

to the I/O pins and test the functionality of the

memory. This paper concentrates on Marching 1/0 test

[Breuer & Friedman, 1976][5], MATS test [Nair,

Thatte & Abraham, 1979][8], MATS+ test[Abadir &

Reghbati, 1983], MATS++ [Goor, 1991],MARCH X

[unpublished], MARCH C [Marinescu, 1982][10],

MARCH C- [Goor, 1991], MARCH A [Suk & Reddy,

1981], MARCH Y [unpublished],MARCH B [Suk

and Reddy, [1981][9], The main goal behind these

approaches is to reduce the memory testing time

which rises exponentially with memory size. Along

with these tests a repair module design is also

provided for the memory which replaces the rows and

columns with maximum errors with redundant rows

and columns.

II. MEMORY FAILURE MODES

Classical fault models are not sufficient to represent

all important failure modes in a RAM; Functional

Fault models should be employed. Memory Fault

models can be classified under the categories shown

below, brief descriptions of the models are given as

follows.

Functional Fault models:

1. Stuck-at fault (SAF): cell or line s-a-0 or s-a-1

2. Stuck-open fault (SOF): open cell or broken line.

3. Transition fault (TF): cell fails to transition from

one state to another.

4. Data retention fault (DRF): cell fails to retain its

logic value after some specified time due to, e.g.,

leakage, resistor opens, or feedback path opens

5. Coupling fault (CF): Coupling Faults are of three

types

• Inversion coupling fault (CFin): a transition

in one cell (aggressor) inverts the content of

another cell (victim).

• Idempotent coupling fault (CFid): a transition

in one cell forces a fixed logic value into

another cell.

• State coupling fault (CFst): a cell/line is

forced to a fixed state only if the coupling

cell/line is in a given state (a.k.a. pattern

sensitivity fault (PSF)).

6. Bridging fault (BF): short between cells (can be

AND type or OR type)

7. Neighborhood Pattern Sensitive Fault (NPSF)

8. Active (Dynamic) NPSF

9. Passive NPSF

10. Static NPSF

Address decoder Faults (AFs)

1. No cell accessed by certain address.

2. Multiple cells accessed by certain address

3. Certain cell not accessed by any address

4. Certain cell accessed by multiple addresses

For the sake of simplicity, the dynamic faults are not

considered.

III. ALGORITHM’S AND ANALYSIS

A MARCH TEST consists of a finite sequence of

March elements, while a March element is a finite

sequence of operations applied to every cell in the

memory array before proceeding to the next cell. An

operation can consist of writing a 0 into a cell (w0),

writing a 1 into a cell (w1), reading an expected 0

from a cell (r0), and reading an expected 1 from a cell

(r1).

MARCHING 1/0 Test:

 The MARCHING 1/0 is a Test of 14n complexity. It

is a complete Test for AF’s, SAF’s and TF’s but has

the ability to detect only a part of CF’s . The Test

sequence is given as follows.

MATS Test:

MATS stands for Modified Algorithmic Test Sequence.

MATS is the shortest March test for unlinked SAF’s

in memory cell array and read/write logic circuitry.

The algorithm can detect all Faults for OR type

technology since the result of reading multiple cells is

considered as an OR function of the contents of those

cells. This Algorithm can also be used for AF’s of

AND type technology using the MATS-AND Test

sequence given below . The MATS Algorithm has a

complexity of 4n with a better fault coverage

compared to equivalent zero-one and checkerboard

tests.

MATS+ Test:

The MATS+ test sequence detects all SAF’s and

AF’s, its often used instead of MATS when the

technology used under test is unknown. The MATS+

algorithm has a test complexity of 5n.

MATS++ Test:

The MATS++ Test sequence is a complete,

irredundant, & optimized Test sequence. It is similar

to the MATS+ Test but allows fault coverage for

TF’s. Recommended test of 6n Test complexity for

unlinked SAF’s and TF’s.

MARCH X :

 The MARCH X Test is called so since it has been

used without being published [3]. This test detects

unlinked SAF’s, AF’s, TF’s and CFin’s. The MARCH

X test is a test of 6n complexity.

MARCH C :

The MARCH C Test is suited for AF’s, SAF’s, TF’s

and all CF’s [3]. It is a test of 11n complexity.

MARCH C:

This Test sequence is a modification to March C test

implemented in order to remove redundancy present

in it. Detects unlinked AF’s, SAF’s, TF’s and all CF’s.

This test is of complexity 10n.

MARCH A:

The MARCH A Test is the shortest test for AF’s,

SAF’s, linked CFid’s, TF’s not linked with CFid’s,

and certain CFin’s linked with CFid’s [2]. It is a

complete and irredundant test of complexity 15n.

MARCH Y :

MARCH Y Test is an extension of March X. This test

is of complexity 8n and can detect all faults detectable

by March X.

MARCH B:

The MARCH B Test is an extension of MARCH A

Test. It is a complete and irredundant test capable of

detecting AF’s, SAF’s, linked CFid’s or CFin’s. This

test is of complexity 17n.

Fault Coverage for March tests:

 All the algorithms are implemented in VHDL and

select lines are provided externally which is used for

the selection of test algorithm.The memory test

controller is built with all these test algorithms and the

flow charts used for this is given in Fig 1.

Fault MATS++ MARCHX MARCHY
MARCH

C-

SAF’s 100% 100% 100% 100%

TF’s 100% 100% 100% 100%

SOF’s 100% 0.2% 100% 0.2%

AF’s 100% 100% 100% 100%

CFin’s 75.0% 100% 100% 100%

CFid’s 37.5% 50.0% 50.0% 100%

CFst’s 50.0% 62.5% 62.5% 100%

Table 1: Fault coverage in march tests

Fig 1: Flow chart showing MTC implementation

After designing and testing MTC (memory test

controller), the next step is the design of control logic

for repair module.

Memory test algorithms detect only the faults and

determine whether the chip is faulty or not. In the case

of repairable memories along with testing the location

of faults and repair is also required. Including extra

rows and columns that can be swapped for defective

elements known as adding redundancy to the chip-can,

in certain instances, help raise memory yield

substantially. The test and repair logic modules should

be present in the memory wrapper. Memories can

have either spare rows, or spare columns or both. In

some RAMs, the memories are arranged in block

fashion with spare rows and columns. The

arrangement is shown in Fig. 2.

The memory cell is tested using the test algorithms

and taken the error addresses. The memory matrix is

declared in the software which has the same number

of cells as in actuality. The Error addresses are

marked as 1’s and rest as 0’s in the memory matrix

which we have declared in the software. It is as shown

in the Fig 3.

Fig 2 : Arrangement of memory with spare rows

and columns

Fig 3 : Memory matrix indicating the error

addresses

The program checks for the number of errors in each

row and column in the memory block. The error in

rows and columns are stored in the array and that

array is sorted in ascending order for the maximum

error addresses . Those addresses are sent to fuse box.

If the spare rows and columns are 3 then first three

addresses are sent to fuse box. In the fuse box the

mapping will be done. The error row or column is

replaced by the spare rows present in the memory. The

flow chart for the control logic is as shown in Fig 5.3

and 5.4. The repair system is limited in the paper till

the storage of addresses of maximum errors in the

rows and columns which is equal to the spare rows.

This finishes the control logic of the repair

mechanism.In this procedure a file which has the error

addresses is taken and then it is put in the matrix form

to calculate the maximum errors in rows and columns.

The procedure is given in the below algorithm.

 After generating the addresses the addresses

are given to the fuse box where the address mapping is

done. One problem with certain redundancy models is

that as the size and complexity of the SoC grows,

adding extra rows and columns will become more and

more burdensome, adding to the cost and intricacy of

the chips. But in applications where accuracy is

required this procedure is an advantage.

Algorithm for the implementation of the repair

module:

1. Open the error address file and initialize an array

equal to the memory size in the C program.

2. Make the array element of that error address equal

to 1. Other array elements are initialized to 0.

3. Arrange it in the matrix form of 1024X8 by matrix

operation.

4. Make the count equal to number of redundant rows

available in the memory

5. See the maximum number of errors(1’s) present in

the column. Display the column address

6. Replace that column by 0. Decrement count

7. Check if count is zero.If it is zero then go to step 5

or else go to step 8.

8. Initialize counter value to the number of redundant

rows present in the memory.

9. See for maximum number of errors present in the

row.

10. Display the row address and decrement the

count.make that row as zero.

11. Check if row count is zero.If it is not zero then go

to step 9. else go to next step.

12. Store all the row and column addresses which has

the maximum errors

This is the control logic for the repair module which

has been developed and checked in C. MARCH tests

are extensively being used today for Functional testing

of SRAM and DRAM technologies. They are more

efficient then older classical pattern based tests with

better fault coverage. This paper concentrates on

producing IP to perform test and repair and diagnosis.

This IP is designed to increase the reliability and

performance.

IV. CONCLUSIONS:

MARCH tests are extensively being used today for

Functional testing RAMs. They are more efficient then

older classical pattern based tests with better fault

coverage. The Memory Test Controller was

successfully designed. The simulation was done using

ModelSim software and it was implemented on the

FPGA to check for the real time inputs. The hardware

code is written in such a way that it can be modified

for the any memory capacity by doing very minimal

changes in the hardware. The repair module is done

using C language which tells the addresses of the

maximum number of errors in either row or column.

One problem with certain redundancy models is that

as the size and complexity of the SoC grows, adding

extra rows and columns will become more and more

burdensome, adding to the cost and intricacy of the

chips. But in applications where accuracy is required

this procedure is an advantage. The project was

successfully designed and tested.

Test procedures that are considered in the project are

widely used today for testing chip level, array level

and board level functional memory defects. The

project can be further improved by adding

Neighborhood pattern sensitive tests and tests to check

for all the linked errors completely in the memory test

controller. This project is limited to the control logic

design. The data path design is the next step in the

project. This Project can also be converted to ASIC

implementation if data path is designed and further

above mentioned two tests are added.

V. REFERENCES:

[1]. Memory testing, Cheng-Wen Wu, Lab for reliable

computing (LaRC), EE, NTHU.

[2]. Fault models and Memory Testing, Cheng-Wen

Wu, Lab for realiable computing(LaRC), NTHU.

[3]. Using march tests to test SRAM’S, Van De

Goor, A.J.; Design & test of Computers, IEEE

Volume 10, Issue 1, march 1993 Page(s):8 – 14.

[4]. Essentials of Electronic Testing,

Michael L.Bushnell, Vishwani D.Agarwal.

[5]. A.J. van de Goor, Testing Semiconductor

Memories, Theory and Practice, John

Wiley&Sons, Chichester, UK, 1991.

[6]. S.M. Thatte and J.A. Abraham, ‘Testing of

Semiconductor random Access Memories, IEEE

Computer Society Press, Los alamitos, Calif., June

1977, pp. 81-87.

[7]. R. Nair , “Comments on an optimal algorithm for

testing stuck at faults in RAM”, lEEE Trans.

Computers, Vol. C-28, NO. 3, 1978, pp. 572-576.

[8]. D.S.Suk and Reddy “A march test for functional

faults in semiconductor Random-Access Memories,”

lEEE Trans on Computers, Vol. C-30, No. 12, 1981,

pp. 982-985.

[9]. M.S.Abadir and J.K. Reghbati, “Functional

testing for semiconductor RAM” ACM computing

surveys,Vol.15,NO.3, pp. 175-198

[10] http://www.eetimes.com

[11] SoC Yield Optimization via an Embedded-

Memory Test by Samvel Shoukourian, Valery

Vardanian, and Yervant Zorian published by IEEE CS

and IEEE CAS.

